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Transition metal-catalyzed coupling reaction between
alkyne and alkene is a useful synthetic protocol for synthesis
of 1,3-diene.1 Not only are 1,3-dienes themselves important
but they have also wide applicability in the Diels-Alder
reaction. Recently, Mitsudo2 and Trost3 reported ruthenium-
catalyzed intermolecular addition of alkynes to alkenes. In
both reactions, formation of ruthenacyclopentene was pro-
posed as an intermediate. We now report two types of
intramolecular cyclizations of enynes using RuClH(CO)-
(PPh3)3 as a catalyst via the following three steps: hydro-
metalation, carbometalation, and then â-hydride elimina-
tion,4 which provide cyclized compounds I5 and II, respectively
(Scheme 1). Among the many reports on hydroruthenation
of RuClH(CO)(PPh3)3 toward multiple bonds,6 this is the first
example of a stereoselective carbon-carbon bond-forming
reaction using RuClH(CO)(PPh3)3.

First, we examined ruthenium-catalyzed cyclizations us-
ing 1a as a substrate (n ) 3, Table 1, run 1). A solution of
1a (0. 32 mmol) and RuClH(CO)(PPh3)3 (5 mol %) in toluene
(1.5 mL) was refluxed for 9 h to afford the cyclized product
2a in 62% yield. A strong NOE between two olefinic protons
of 2a clarified the structure of the product. The cyclization
of 1b also succeeded in providing 2b in 57% yield (run 2). It
is notable that both substrates, having an aromatic group
or an alkyl group on the alkyne, can be used in this reaction.7

To examine the substituent effects on the aromatic ring,
the cyclization of 1c, having a methoxy group on the
aromatic ring, was carried out to provide 2c in 82% yield
(run 3). Similarly, the reaction of 1d, having a methyl group,
proceeded to give 2d in 67% yield (run 4). However, in the
case of 1e, having a trifluoromethyl group, the cyclized
product 2e was obtained in 53% yield along with recovered
starting material 1e (34% yield) (run 5). These results clearly
indicated that the electron-withdrawing group on the alkyne
reduced the yield of the product.

Surprisingly, when cyclization of 3a, having a two-carbon
tether between the alkyne and olefin, was carried out, the
reaction was accomplished within 1 h to afford the cyclized

product in 81% yield (Scheme 2). However, 1H NMR and 13C
NMR spectra could not clarify the ring size of the product
(4 or 5a). To confirm the structure of 5a, hydrogenation was
carried out to give 6 as a mixture of two isomers. The COSY
data of one isomer confirmed that a five-membered ring was
formed in this reaction.8

The effects of substituents on the aromatic ring were
studied again (Table 2). Cyclization of 3b afforded 5b in 75%
yield (run 2), and cyclization of 3c provided 5c in 67% yield
(run 3). However, the reaction of 3d was not completed to
provide 5d in only 48% yield along with 3d (run 4).
Accordingly, a tendency similar to that shown in the
previous cyclization was also observed in this reaction.9

The reaction mechanism can be envisioned as shown in
Scheme 3. The reaction starts with a hydroruthenation of
the alkyne to give the vinylruthenium complex III or IV,
which is in a state of equilibrium with 1 or 3. In the reaction
of 1 and RuClH(CO)(PPh3)3, intramolecular olefin insertion
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Scheme 1

Table 1. Cyclization of 1 Using RuClH(CO)(PPh3)3

run substrate R1 R2 h 2a-e (%)

1 1a Me (CH2)3Ph 9 62
2 1b Ph Et 18 57
3 1c 4-MeO-Ph Et 18 82
4 1d 4-Me-Ph Et 18 67
5 1e 4-CF3-Ph Et 18 53a

a The recovery of 1e was 34%.

Scheme 2
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into the Ru-C bond of III proceeds and is followed by a syn
â-H elimination to produce the cyclized product 2 stereose-
lectively. On the other hand, in the reaction of 3, after
vinylruthenium complex IV (a cis addition product) isomer-
ized to vinylruthenium complex VI (via a dipolar intermedi-
ate V),10 intramolecular olefin insertion took place, and
successive syn â-H elimination produced 5, exclusively. In
both reactions of 1 and 3, five-membered ring formation
preceded all other ring formations.11 A remarkable charac-
teristic in our reaction is the formation of a cyclopentene
moiety conjugated with an exo-olefin.

Next, the cyclization of substrate 7 (Z isomer of 3b) was
examined (Table 3). After 20 min, cyclized products 8 and 9
were obtained in 33% and 10% yields, respectively, along
with 22% of the recovered starting material. NOE experi-
ments clarified the structures of 8 and 9. The major product
8 had the expected stereochemistry with regard to the R,â-
unsaturated ester. The prolonged reaction time (1 h) did not
increase the yield of 8 (30%), although it increased the yield
of 9 (25%). When 8 was treated under the same reaction
conditions, isomerization of 8 into 9 occurred.

Finally, we examined the cyclization of 10, which does not
have an electron-withdrawing group on the alkene function-
ality. The reaction of 10 with ruthenium complex gave 11
(38% yield) and 12 (29% yield) (Scheme 4). It is notable that
intramolecular olefin insertion took place on the alkene
without the presence of an electron-withdrawing group.

When 13 was treated in a similar manner, the products were
only silyl enol ethers 14a (54% yield) and 14b (8% yield),
and E isomer 14a was the major product.

In summary, we have succeeded in the first example of
an intramolecular cyclization of an enyne substrate using
RuClH(CO)(PPh3)3 as a catalyst. Formation of cyclopentene
derivatives is a prominent characteristic in our reaction
(Scheme 1). Further studies on cyclizations using ruthenium
catalysts are in progress.
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Table 2. Cyclization of 3 Using RuClH(CO)(PPh3)3

run substrate R1 R2 5a-d (%)

1 3a 4-MeO-Ph Et 81
2 3b 4-Me-Ph Et 75
3 3c Ph Et 67
4 3d 4-CF3-Ph Et 48a

a The recovery of 3d was 48%.

Table 3. Cyclization of 7 (Z Isomer of 3b)

yields (%)

run time 8 9 7

1 20 min 33 10 22
2 1 h 30 25

Scheme 4a

a Key: (a) 5 mol % RuClH(CO)(PPh3)3, toluene, reflux, 1 h.
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